Clinical Psychiatry News is the online destination and multimedia properties of Clinica Psychiatry News, the independent news publication for psychiatrists. Since 1971, Clinical Psychiatry News has been the leading source of news and commentary about clinical developments in psychiatry as well as health care policy and regulations that affect the physician's practice.

Theme
medstat_cpn
Top Sections
Conference Coverage
Families in Psychiatry
Weighty Issues
cpn

Dear Drupal User: You're seeing this because you're logged in to Drupal, and not redirected to MDedge.com/psychiatry. 

Main menu
CPN Main Menu
Explore menu
CPN Explore Menu
Proclivity ID
18814001
Unpublish
Specialty Focus
Addiction Medicine
Bipolar Disorder
Depression
Schizophrenia & Other Psychotic Disorders
Negative Keywords
Bipolar depression
Depression
adolescent depression
adolescent major depressive disorder
adolescent schizophrenia
adolescent with major depressive disorder
animals
autism
baby
brexpiprazole
child
child bipolar
child depression
child schizophrenia
children with bipolar disorder
children with depression
children with major depressive disorder
compulsive behaviors
cure
elderly bipolar
elderly depression
elderly major depressive disorder
elderly schizophrenia
elderly with dementia
first break
first episode
gambling
gaming
geriatric depression
geriatric major depressive disorder
geriatric schizophrenia
infant
ketamine
kid
major depressive disorder
major depressive disorder in adolescents
major depressive disorder in children
parenting
pediatric
pediatric bipolar
pediatric depression
pediatric major depressive disorder
pediatric schizophrenia
pregnancy
pregnant
rexulti
skin care
suicide
teen
wine
Negative Keywords Excluded Elements
header[@id='header']
section[contains(@class, 'nav-hidden')]
footer[@id='footer']
div[contains(@class, 'pane-pub-article-cpn')]
div[contains(@class, 'pane-pub-home-cpn')]
div[contains(@class, 'pane-pub-topic-cpn')]
div[contains(@class, 'panel-panel-inner')]
div[contains(@class, 'pane-node-field-article-topics')]
section[contains(@class, 'footer-nav-section-wrapper')]
Altmetric
Article Authors "autobrand" affiliation
Clinical Psychiatry News
DSM Affiliated
Display in offset block
Disqus Exclude
Best Practices
CE/CME
Education Center
Medical Education Library
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Top 25
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Publication LayerRX Default ID
796,797
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off

What Is a Blue Zone Certified Clinician?

Article Type
Changed

It is a great day when a patient shows up at clinical appointment already motivated to make lifestyle behavior changes. Often, they have been inspired by health information they consumed elsewhere, such as from a book, movie, documentary, TV show, a friend, or something out in the community.

Currently, one of the more public representations of health and longevity promotion is Blue Zones. The organization, named for specific areas of the world — the so-called blue zones, where people experience less disease and live longer lives — has created considerable public awareness for healthy living. Today, there are more than 75 Blue Zones Project communities across the United States, where community leaders, businesses, organizations, and citizens collaborate to make healthier choices the easier choices. A recent Netflix special, Live to 100: Secrets of the Blue Zones, further propelled blue zones into the public consciousness.

For clinicians trained in lifestyle medicine, Blue Zones’ consumer awareness is an opportunity. There is considerable crossover between the lifestyle habits advocated by Blue Zones, known as the Power9, and the six pillars of lifestyle medicine. The Blue Zones emphasis on “plant-slant” diet, natural movement, purpose and contribution, downshifting, and family and community intersect with the lifestyle medicine pillars of whole-food, plant-predominant eating patterns, regular physical activity, stress management, restorative sleep, and positive social connections. Both Blue Zones and lifestyle medicine share a goal of creating healthier and stronger individuals and communities.

For those reasons, it made perfect sense that Blue Zones and the American College of Lifestyle Medicine (ACLM) recently announced a partnership to synergize both organizations’ strengths and resources. Among other things, the collaboration will establish a new certification status of Blue Zones–Certified Physician or Blue Zones–Certified Healthcare Professional, available in 2025 exclusively to clinicians who already are or become certified in lifestyle medicine.

Because of Blue Zones’ considerable consumer awareness, physicians and other health professionals who earn the certification will stand out to potential patients as clinicians with the training and knowledge to help them make sustainable lifestyle behavior changes. A challenging part of any clinician’s job is educating and convincing patients on the proven health benefits of lifestyle behavior change within the time restraints of a routine clinical visit. Patients familiar with Blue Zones are more likely to arrive already interested in changing lifestyle behavior, and clinicians should have the skills to help them achieve their goals.

In addition, community infrastructure developed through Blue Zones that supports healthful lifestyle choices is significant for patients. Lack of resources in their home, work, and community environments is a common obstacle that patients cite when discussing lifestyle change with a clinician. Bicycle lanes for commuting, parks with exercise equipment, accessible healthy food options, and community events to facilitate positive social connections enhance lifestyle-medicine prescriptions. Workplaces, restaurants, places of worship, and grocery stores are examples of community stakeholders that collaborate in Blue Zones communities to promote healthy lifestyle decisions. Although lifestyle medicine clinicians can and do identify creative ways to support patients in communities without strong healthy choice infrastructure, the Blue Zones road map is a welcome companion.

The timing is right for this synthesis of Blue Zones and lifestyle medicine. As consumer interest in Blue Zones has risen, so has clinician interest in evidence-based lifestyle medicine. Since certification in lifestyle medicine began in 2017, almost 6700 physicians and other health professionals have become certified worldwide. More than 43,000 health care professionals have registered for ACLM’s complimentary lifestyle and food-as-medicine courses highlighted by the White House Conference on Hunger, Nutrition, and Health. 

What if more patients came to us motivated to make lifestyle changes because of awareness infused in their work and supported in their surrounding community? Matching lifestyle medicine certification with Blue Zone communities equips clinicians to help these patients achieve what they really want: to live longer and better.

Dr. Collings is Director of Lifestyle Medicine, Silicon Valley Medical Development, and Past President, American College of Lifestyle Medicine, Mountain View, California. She has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

It is a great day when a patient shows up at clinical appointment already motivated to make lifestyle behavior changes. Often, they have been inspired by health information they consumed elsewhere, such as from a book, movie, documentary, TV show, a friend, or something out in the community.

Currently, one of the more public representations of health and longevity promotion is Blue Zones. The organization, named for specific areas of the world — the so-called blue zones, where people experience less disease and live longer lives — has created considerable public awareness for healthy living. Today, there are more than 75 Blue Zones Project communities across the United States, where community leaders, businesses, organizations, and citizens collaborate to make healthier choices the easier choices. A recent Netflix special, Live to 100: Secrets of the Blue Zones, further propelled blue zones into the public consciousness.

For clinicians trained in lifestyle medicine, Blue Zones’ consumer awareness is an opportunity. There is considerable crossover between the lifestyle habits advocated by Blue Zones, known as the Power9, and the six pillars of lifestyle medicine. The Blue Zones emphasis on “plant-slant” diet, natural movement, purpose and contribution, downshifting, and family and community intersect with the lifestyle medicine pillars of whole-food, plant-predominant eating patterns, regular physical activity, stress management, restorative sleep, and positive social connections. Both Blue Zones and lifestyle medicine share a goal of creating healthier and stronger individuals and communities.

For those reasons, it made perfect sense that Blue Zones and the American College of Lifestyle Medicine (ACLM) recently announced a partnership to synergize both organizations’ strengths and resources. Among other things, the collaboration will establish a new certification status of Blue Zones–Certified Physician or Blue Zones–Certified Healthcare Professional, available in 2025 exclusively to clinicians who already are or become certified in lifestyle medicine.

Because of Blue Zones’ considerable consumer awareness, physicians and other health professionals who earn the certification will stand out to potential patients as clinicians with the training and knowledge to help them make sustainable lifestyle behavior changes. A challenging part of any clinician’s job is educating and convincing patients on the proven health benefits of lifestyle behavior change within the time restraints of a routine clinical visit. Patients familiar with Blue Zones are more likely to arrive already interested in changing lifestyle behavior, and clinicians should have the skills to help them achieve their goals.

In addition, community infrastructure developed through Blue Zones that supports healthful lifestyle choices is significant for patients. Lack of resources in their home, work, and community environments is a common obstacle that patients cite when discussing lifestyle change with a clinician. Bicycle lanes for commuting, parks with exercise equipment, accessible healthy food options, and community events to facilitate positive social connections enhance lifestyle-medicine prescriptions. Workplaces, restaurants, places of worship, and grocery stores are examples of community stakeholders that collaborate in Blue Zones communities to promote healthy lifestyle decisions. Although lifestyle medicine clinicians can and do identify creative ways to support patients in communities without strong healthy choice infrastructure, the Blue Zones road map is a welcome companion.

The timing is right for this synthesis of Blue Zones and lifestyle medicine. As consumer interest in Blue Zones has risen, so has clinician interest in evidence-based lifestyle medicine. Since certification in lifestyle medicine began in 2017, almost 6700 physicians and other health professionals have become certified worldwide. More than 43,000 health care professionals have registered for ACLM’s complimentary lifestyle and food-as-medicine courses highlighted by the White House Conference on Hunger, Nutrition, and Health. 

What if more patients came to us motivated to make lifestyle changes because of awareness infused in their work and supported in their surrounding community? Matching lifestyle medicine certification with Blue Zone communities equips clinicians to help these patients achieve what they really want: to live longer and better.

Dr. Collings is Director of Lifestyle Medicine, Silicon Valley Medical Development, and Past President, American College of Lifestyle Medicine, Mountain View, California. She has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

It is a great day when a patient shows up at clinical appointment already motivated to make lifestyle behavior changes. Often, they have been inspired by health information they consumed elsewhere, such as from a book, movie, documentary, TV show, a friend, or something out in the community.

Currently, one of the more public representations of health and longevity promotion is Blue Zones. The organization, named for specific areas of the world — the so-called blue zones, where people experience less disease and live longer lives — has created considerable public awareness for healthy living. Today, there are more than 75 Blue Zones Project communities across the United States, where community leaders, businesses, organizations, and citizens collaborate to make healthier choices the easier choices. A recent Netflix special, Live to 100: Secrets of the Blue Zones, further propelled blue zones into the public consciousness.

For clinicians trained in lifestyle medicine, Blue Zones’ consumer awareness is an opportunity. There is considerable crossover between the lifestyle habits advocated by Blue Zones, known as the Power9, and the six pillars of lifestyle medicine. The Blue Zones emphasis on “plant-slant” diet, natural movement, purpose and contribution, downshifting, and family and community intersect with the lifestyle medicine pillars of whole-food, plant-predominant eating patterns, regular physical activity, stress management, restorative sleep, and positive social connections. Both Blue Zones and lifestyle medicine share a goal of creating healthier and stronger individuals and communities.

For those reasons, it made perfect sense that Blue Zones and the American College of Lifestyle Medicine (ACLM) recently announced a partnership to synergize both organizations’ strengths and resources. Among other things, the collaboration will establish a new certification status of Blue Zones–Certified Physician or Blue Zones–Certified Healthcare Professional, available in 2025 exclusively to clinicians who already are or become certified in lifestyle medicine.

Because of Blue Zones’ considerable consumer awareness, physicians and other health professionals who earn the certification will stand out to potential patients as clinicians with the training and knowledge to help them make sustainable lifestyle behavior changes. A challenging part of any clinician’s job is educating and convincing patients on the proven health benefits of lifestyle behavior change within the time restraints of a routine clinical visit. Patients familiar with Blue Zones are more likely to arrive already interested in changing lifestyle behavior, and clinicians should have the skills to help them achieve their goals.

In addition, community infrastructure developed through Blue Zones that supports healthful lifestyle choices is significant for patients. Lack of resources in their home, work, and community environments is a common obstacle that patients cite when discussing lifestyle change with a clinician. Bicycle lanes for commuting, parks with exercise equipment, accessible healthy food options, and community events to facilitate positive social connections enhance lifestyle-medicine prescriptions. Workplaces, restaurants, places of worship, and grocery stores are examples of community stakeholders that collaborate in Blue Zones communities to promote healthy lifestyle decisions. Although lifestyle medicine clinicians can and do identify creative ways to support patients in communities without strong healthy choice infrastructure, the Blue Zones road map is a welcome companion.

The timing is right for this synthesis of Blue Zones and lifestyle medicine. As consumer interest in Blue Zones has risen, so has clinician interest in evidence-based lifestyle medicine. Since certification in lifestyle medicine began in 2017, almost 6700 physicians and other health professionals have become certified worldwide. More than 43,000 health care professionals have registered for ACLM’s complimentary lifestyle and food-as-medicine courses highlighted by the White House Conference on Hunger, Nutrition, and Health. 

What if more patients came to us motivated to make lifestyle changes because of awareness infused in their work and supported in their surrounding community? Matching lifestyle medicine certification with Blue Zone communities equips clinicians to help these patients achieve what they really want: to live longer and better.

Dr. Collings is Director of Lifestyle Medicine, Silicon Valley Medical Development, and Past President, American College of Lifestyle Medicine, Mountain View, California. She has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Common Antidepressants Ranked by Potential for Weight Gain

Article Type
Changed

 

Eight commonly used antidepressants have been ranked by their weight gain potential. 

Results of a large observational study showed small differences in short- and long-term weight change in patients prescribed one of eight antidepressants, with bupropion associated with the lowest weight gain and escitalopramparoxetine, and duloxetine associated with the greatest. 

Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with those taking sertraline, which was used as a comparator. 

Investigators noted that the more clinicians and patients know about how a particular antidepressant may affect patients’ weight, the better informed they can be about which antidepressants to prescribe. 

“Patients and their clinicians often have several options when starting an antidepressant for the first time. This study provides important real-world evidence regarding the amount of weight gain that should be expected after starting some of the most common antidepressants,” lead author Joshua Petimar, ScD, assistant professor of population medicine in the Harvard Pilgrim Health Care Institute at Harvard Medical School, Boston, said in a press release. 

The findings were published online in Annals of Internal Medicine


 

Real-World Data

Though weight gain is a commonly reported side effect of antidepressant use and may lead to medication nonadherence and worse outcomes, there is a lack of real-world data about weight change across specific medications. 

Investigators used electronic health records from eight health care systems across the United States spanning from 2010 to 2019. The analysis included information on 183,118 adults aged 20-80 years who were new users of one of eight common first-line antidepressants. Investigators measured their weight at baseline and at 6, 12, and 24 months after initiation to estimate intention-to-treat (ITT) effects of weight change.

At baseline, participants were randomly assigned to begin sertraline, citalopram, escitalopram, fluoxetine, paroxetine, bupropion, duloxetine, or venlafaxine

The most common antidepressants prescribed were sertraline, citalopram, and bupropion. Approximately 36% of participants had a diagnosis of depression, and 39% were diagnosed with anxiety.

Among selective serotonin reuptake inhibitors (SSRIs), escitalopram and paroxetine were associated with the greatest 6-month weight gain, whereas bupropion was associated with the least weight gain across all analyses.

Using sertraline as a comparator, 6-month weight change was lower for bupropion (difference, 0.22 kg) and higher for escitalopram (difference, 0.41 kg), duloxetine (difference, 0.34 kg), paroxetine (difference, 0.37 kg), and venlafaxine (difference, 0.17 kg).

Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with sertraline users.

Investigators noted little difference in adherence levels between medications during the study except at 6 months, when it was higher for those who took bupropion (41%) than for those taking other antidepressants (28%-36%).

The study included data only on prescriptions and investigators could not verify whether the medications were dispensed or taken as prescribed. Other limitations included missing weight information because most patients did not encounter the health system at exactly 6, 12, and 24 months; only 15%-30% had weight measurements in those months. 

Finally, the low adherence rates made it difficult to attribute relative weight change at the 12- and 24-month time points to the specific medications of interest.

“Clinicians and patients could consider these differences when making decisions about specific antidepressants, especially given the complex relationships of obesity and depression with health, quality of life, and stigma,” the authors wrote. 

The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Disclosures are noted in the original article. 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

Eight commonly used antidepressants have been ranked by their weight gain potential. 

Results of a large observational study showed small differences in short- and long-term weight change in patients prescribed one of eight antidepressants, with bupropion associated with the lowest weight gain and escitalopramparoxetine, and duloxetine associated with the greatest. 

Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with those taking sertraline, which was used as a comparator. 

Investigators noted that the more clinicians and patients know about how a particular antidepressant may affect patients’ weight, the better informed they can be about which antidepressants to prescribe. 

“Patients and their clinicians often have several options when starting an antidepressant for the first time. This study provides important real-world evidence regarding the amount of weight gain that should be expected after starting some of the most common antidepressants,” lead author Joshua Petimar, ScD, assistant professor of population medicine in the Harvard Pilgrim Health Care Institute at Harvard Medical School, Boston, said in a press release. 

The findings were published online in Annals of Internal Medicine


 

Real-World Data

Though weight gain is a commonly reported side effect of antidepressant use and may lead to medication nonadherence and worse outcomes, there is a lack of real-world data about weight change across specific medications. 

Investigators used electronic health records from eight health care systems across the United States spanning from 2010 to 2019. The analysis included information on 183,118 adults aged 20-80 years who were new users of one of eight common first-line antidepressants. Investigators measured their weight at baseline and at 6, 12, and 24 months after initiation to estimate intention-to-treat (ITT) effects of weight change.

At baseline, participants were randomly assigned to begin sertraline, citalopram, escitalopram, fluoxetine, paroxetine, bupropion, duloxetine, or venlafaxine

The most common antidepressants prescribed were sertraline, citalopram, and bupropion. Approximately 36% of participants had a diagnosis of depression, and 39% were diagnosed with anxiety.

Among selective serotonin reuptake inhibitors (SSRIs), escitalopram and paroxetine were associated with the greatest 6-month weight gain, whereas bupropion was associated with the least weight gain across all analyses.

Using sertraline as a comparator, 6-month weight change was lower for bupropion (difference, 0.22 kg) and higher for escitalopram (difference, 0.41 kg), duloxetine (difference, 0.34 kg), paroxetine (difference, 0.37 kg), and venlafaxine (difference, 0.17 kg).

Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with sertraline users.

Investigators noted little difference in adherence levels between medications during the study except at 6 months, when it was higher for those who took bupropion (41%) than for those taking other antidepressants (28%-36%).

The study included data only on prescriptions and investigators could not verify whether the medications were dispensed or taken as prescribed. Other limitations included missing weight information because most patients did not encounter the health system at exactly 6, 12, and 24 months; only 15%-30% had weight measurements in those months. 

Finally, the low adherence rates made it difficult to attribute relative weight change at the 12- and 24-month time points to the specific medications of interest.

“Clinicians and patients could consider these differences when making decisions about specific antidepressants, especially given the complex relationships of obesity and depression with health, quality of life, and stigma,” the authors wrote. 

The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Disclosures are noted in the original article. 

A version of this article appeared on Medscape.com.

 

Eight commonly used antidepressants have been ranked by their weight gain potential. 

Results of a large observational study showed small differences in short- and long-term weight change in patients prescribed one of eight antidepressants, with bupropion associated with the lowest weight gain and escitalopramparoxetine, and duloxetine associated with the greatest. 

Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with those taking sertraline, which was used as a comparator. 

Investigators noted that the more clinicians and patients know about how a particular antidepressant may affect patients’ weight, the better informed they can be about which antidepressants to prescribe. 

“Patients and their clinicians often have several options when starting an antidepressant for the first time. This study provides important real-world evidence regarding the amount of weight gain that should be expected after starting some of the most common antidepressants,” lead author Joshua Petimar, ScD, assistant professor of population medicine in the Harvard Pilgrim Health Care Institute at Harvard Medical School, Boston, said in a press release. 

The findings were published online in Annals of Internal Medicine


 

Real-World Data

Though weight gain is a commonly reported side effect of antidepressant use and may lead to medication nonadherence and worse outcomes, there is a lack of real-world data about weight change across specific medications. 

Investigators used electronic health records from eight health care systems across the United States spanning from 2010 to 2019. The analysis included information on 183,118 adults aged 20-80 years who were new users of one of eight common first-line antidepressants. Investigators measured their weight at baseline and at 6, 12, and 24 months after initiation to estimate intention-to-treat (ITT) effects of weight change.

At baseline, participants were randomly assigned to begin sertraline, citalopram, escitalopram, fluoxetine, paroxetine, bupropion, duloxetine, or venlafaxine

The most common antidepressants prescribed were sertraline, citalopram, and bupropion. Approximately 36% of participants had a diagnosis of depression, and 39% were diagnosed with anxiety.

Among selective serotonin reuptake inhibitors (SSRIs), escitalopram and paroxetine were associated with the greatest 6-month weight gain, whereas bupropion was associated with the least weight gain across all analyses.

Using sertraline as a comparator, 6-month weight change was lower for bupropion (difference, 0.22 kg) and higher for escitalopram (difference, 0.41 kg), duloxetine (difference, 0.34 kg), paroxetine (difference, 0.37 kg), and venlafaxine (difference, 0.17 kg).

Escitalopram, paroxetine, and duloxetine users were 10%-15% more likely to gain at least 5% of their baseline weight compared with sertraline users.

Investigators noted little difference in adherence levels between medications during the study except at 6 months, when it was higher for those who took bupropion (41%) than for those taking other antidepressants (28%-36%).

The study included data only on prescriptions and investigators could not verify whether the medications were dispensed or taken as prescribed. Other limitations included missing weight information because most patients did not encounter the health system at exactly 6, 12, and 24 months; only 15%-30% had weight measurements in those months. 

Finally, the low adherence rates made it difficult to attribute relative weight change at the 12- and 24-month time points to the specific medications of interest.

“Clinicians and patients could consider these differences when making decisions about specific antidepressants, especially given the complex relationships of obesity and depression with health, quality of life, and stigma,” the authors wrote. 

The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Disclosures are noted in the original article. 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Specific Antipsychotics Linked to Increased Pneumonia Risk

Article Type
Changed

 

TOPLINE:

High-dose antipsychotics, particularly quetiapine, clozapine, and olanzapine, are linked to increased pneumonia risk in patients with schizophrenia, new data show. Monotherapy with high anticholinergic burden also raises pneumonia risk.

METHODOLOGY: 

  • Using several nationwide data registers, investigators pulled data on individuals who received inpatient care for schizophrenia or schizoaffective disorder (n = 61,889) between 1972 and 2014.
  • Data on drug use were gathered from a prescription register and included dispensing dates, cost, dose, package size, and drug formulation. Data on dates and causes of death were obtained from the Causes of Death register.
  • After entering the cohort, follow-up started in January 1996 or after the first diagnosis of schizophrenia for those diagnosed between 1996 and 2014.
  • The primary outcome was hospitalization caused by pneumonia as the main diagnosis for hospital admission.

TAKEAWAY: 

  • During 22 years of follow-up, 8917 patients (14.4%) had one or more hospitalizations for pneumonia, and 1137 (12.8%) died within 30 days of admission.
  • Pneumonia risk was the highest with the use of high-dose (> 440 mg/d) quetiapine (P = .003), followed by high- (≥ 330 mg/d) and medium-dose (180 to < 330 mg/d) clozapine (both P < .001) and high-dose (≥ 11 mg/d) olanzapine (P = .02).
  • Compared with no antipsychotic use, antipsychotic monotherapy was associated with an increased pneumonia risk (P = .03), whereas antipsychotic polytherapy was not.
  • Only the use of antipsychotics with high anticholinergic potency was associated with pneumonia risk (P < .001).

IN PRACTICE:

“Identification of antipsychotic drugs that are associated with pneumonia risk may better inform prevention programs (eg, vaccinations),” the researchers noted. “Second, the availability of pneumonia risk estimates for individual antipsychotics and for groups of antipsychotics may foster personalized prescribing guidelines.”

SOURCE:

The study was led by Jurjen Luykx, MD, Amsterdam University Medical Center, Amsterdam, the Netherlands. It was published online in JAMA Psychiatry.

LIMITATIONS:

The investigators could not correct for all possible risk factors that may increase pneumonia risk in individuals with schizophrenia, such as smoking and lifestyle habits. Also, cases of pneumonia that didn’t require hospital admission couldn’t be included in the analysis, so the findings may generalize only to cases of severe pneumonia.

DISCLOSURES:

The study was funded by the Finnish Ministry of Social Affairs and Health.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

High-dose antipsychotics, particularly quetiapine, clozapine, and olanzapine, are linked to increased pneumonia risk in patients with schizophrenia, new data show. Monotherapy with high anticholinergic burden also raises pneumonia risk.

METHODOLOGY: 

  • Using several nationwide data registers, investigators pulled data on individuals who received inpatient care for schizophrenia or schizoaffective disorder (n = 61,889) between 1972 and 2014.
  • Data on drug use were gathered from a prescription register and included dispensing dates, cost, dose, package size, and drug formulation. Data on dates and causes of death were obtained from the Causes of Death register.
  • After entering the cohort, follow-up started in January 1996 or after the first diagnosis of schizophrenia for those diagnosed between 1996 and 2014.
  • The primary outcome was hospitalization caused by pneumonia as the main diagnosis for hospital admission.

TAKEAWAY: 

  • During 22 years of follow-up, 8917 patients (14.4%) had one or more hospitalizations for pneumonia, and 1137 (12.8%) died within 30 days of admission.
  • Pneumonia risk was the highest with the use of high-dose (> 440 mg/d) quetiapine (P = .003), followed by high- (≥ 330 mg/d) and medium-dose (180 to < 330 mg/d) clozapine (both P < .001) and high-dose (≥ 11 mg/d) olanzapine (P = .02).
  • Compared with no antipsychotic use, antipsychotic monotherapy was associated with an increased pneumonia risk (P = .03), whereas antipsychotic polytherapy was not.
  • Only the use of antipsychotics with high anticholinergic potency was associated with pneumonia risk (P < .001).

IN PRACTICE:

“Identification of antipsychotic drugs that are associated with pneumonia risk may better inform prevention programs (eg, vaccinations),” the researchers noted. “Second, the availability of pneumonia risk estimates for individual antipsychotics and for groups of antipsychotics may foster personalized prescribing guidelines.”

SOURCE:

The study was led by Jurjen Luykx, MD, Amsterdam University Medical Center, Amsterdam, the Netherlands. It was published online in JAMA Psychiatry.

LIMITATIONS:

The investigators could not correct for all possible risk factors that may increase pneumonia risk in individuals with schizophrenia, such as smoking and lifestyle habits. Also, cases of pneumonia that didn’t require hospital admission couldn’t be included in the analysis, so the findings may generalize only to cases of severe pneumonia.

DISCLOSURES:

The study was funded by the Finnish Ministry of Social Affairs and Health.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

High-dose antipsychotics, particularly quetiapine, clozapine, and olanzapine, are linked to increased pneumonia risk in patients with schizophrenia, new data show. Monotherapy with high anticholinergic burden also raises pneumonia risk.

METHODOLOGY: 

  • Using several nationwide data registers, investigators pulled data on individuals who received inpatient care for schizophrenia or schizoaffective disorder (n = 61,889) between 1972 and 2014.
  • Data on drug use were gathered from a prescription register and included dispensing dates, cost, dose, package size, and drug formulation. Data on dates and causes of death were obtained from the Causes of Death register.
  • After entering the cohort, follow-up started in January 1996 or after the first diagnosis of schizophrenia for those diagnosed between 1996 and 2014.
  • The primary outcome was hospitalization caused by pneumonia as the main diagnosis for hospital admission.

TAKEAWAY: 

  • During 22 years of follow-up, 8917 patients (14.4%) had one or more hospitalizations for pneumonia, and 1137 (12.8%) died within 30 days of admission.
  • Pneumonia risk was the highest with the use of high-dose (> 440 mg/d) quetiapine (P = .003), followed by high- (≥ 330 mg/d) and medium-dose (180 to < 330 mg/d) clozapine (both P < .001) and high-dose (≥ 11 mg/d) olanzapine (P = .02).
  • Compared with no antipsychotic use, antipsychotic monotherapy was associated with an increased pneumonia risk (P = .03), whereas antipsychotic polytherapy was not.
  • Only the use of antipsychotics with high anticholinergic potency was associated with pneumonia risk (P < .001).

IN PRACTICE:

“Identification of antipsychotic drugs that are associated with pneumonia risk may better inform prevention programs (eg, vaccinations),” the researchers noted. “Second, the availability of pneumonia risk estimates for individual antipsychotics and for groups of antipsychotics may foster personalized prescribing guidelines.”

SOURCE:

The study was led by Jurjen Luykx, MD, Amsterdam University Medical Center, Amsterdam, the Netherlands. It was published online in JAMA Psychiatry.

LIMITATIONS:

The investigators could not correct for all possible risk factors that may increase pneumonia risk in individuals with schizophrenia, such as smoking and lifestyle habits. Also, cases of pneumonia that didn’t require hospital admission couldn’t be included in the analysis, so the findings may generalize only to cases of severe pneumonia.

DISCLOSURES:

The study was funded by the Finnish Ministry of Social Affairs and Health.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Feds May End Hospital System’s Noncompete Contract for Part-Time Docs

Article Type
Changed

Mount Sinai Health System in New York City is forcing part-time physicians to sign employment contracts that violate their labor rights, according to a June 2024 complaint by the National Labor Relations Board (NLRB). 

The complaint stems from no-poaching and confidentiality clauses in the agreements required as a condition of employment, NLRB officials alleged.

The contracts state that, for 1 year following termination, part-time physicians may not recruit, solicit, or induce to terminate the employment of any hospital system employee or independent contractor, according to a copy of the terms included in NLRB’s June 18 complaint

By requiring the agreements, NLRB officials claimed, Mount Sinai is “interfering with, restraining, and coercing employees” in violation of the National Labor Relations Act. The health system’s “unfair labor practices” affects commerce as outlined under the law, according to the NLRB. The Act bans employers from burdening or obstructing commerce or the free flow of commerce.

Mount Sinai did not respond to requests for comment.

The NLRB’s complaint follows a landmark decision by the Federal Trade Commission (FTC) to ban noncompete agreements nationwide. In April 2024, the FTC voted to prohibit noncompetes indefinitely in an effort to protect workers.

“Noncompete clauses keep wages low, suppress new ideas, and rob the American economy of dynamism, including from the more than 8500 new startups that would be created a year once noncompetes are banned,” FTC Chair Lina M. Khan said in a statement. “The FTC’s final rule to ban noncompetes will ensure Americans have the freedom to pursue a new job, start a new business, or bring a new idea to market.”

Business groups and agencies have since sued to challenge against the ban, including the Chamber of Commerce. The Chamber and other business groups argue that noncompete agreements are important for companies to protect trade secrets, shield recruiting investments, and hide confidential information. The lawsuits are ongoing. 
 

A Physician Blows the Whistle

An anonymous physician first alerted the NLRB to the contract language in November 2023. The doctor was required the sign the hospital system’s agreement for part-time physicians. The complaint does not say if the employee is still employed by the hospital system. 

To remedy the unfair labor practices alleged, the NLRB seeks an order requiring the health system to rescind the contract language, stop any actions against current or former employees to enforce the provisions, and make whole any employees who suffered financial losses related to the contract terms. 

The allegation against Mount Sinai is among a rising number of grievances filed with the NLRB that claim unfair labor practices. During the first 6 months of fiscal year 2024, unfair labor practice charges filed across the NLRB’s field offices increased 7% — from 9612 in 2023 to 10,278 in 2024, according to a news release

NLRB, meanwhile has been cracking down on anticompetitive labor practices and confidentiality provisions that prevent employees from speaking out. 

In a February 2023 decision for instance, NLRB ruled that an employer violates the National Labor Relations Act by offering severance agreements to workers that include restrictive confidentiality and nondisparagement terms. In 2022, the NLRB and the Federal Trade Commission forged a partnership to more widely combat unfair, anticompetitive, and deceptive business practices. 

“Noncompete provisions reasonably tend to chill employees in the exercise of Section 7 rights when the provisions could reasonably be construed by employees to deny them the ability to quit or change jobs by cutting off their access to other employment opportunities that they are qualified for,” NLRB General Counsel Jennifer Abruzzo said in a 2023 release

Ms. Abruzzo stressed in a memo that NLR Act is committed to an interagency approach to restrictions on the exercise of employee rights, “including limits to workers’ job mobility, information sharing, and referrals to other agencies.” 

Mount Sinai Health System must respond to the NLRB’s complaint by July 16, and an administrative law judge is scheduled to hear the case on September 24.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Mount Sinai Health System in New York City is forcing part-time physicians to sign employment contracts that violate their labor rights, according to a June 2024 complaint by the National Labor Relations Board (NLRB). 

The complaint stems from no-poaching and confidentiality clauses in the agreements required as a condition of employment, NLRB officials alleged.

The contracts state that, for 1 year following termination, part-time physicians may not recruit, solicit, or induce to terminate the employment of any hospital system employee or independent contractor, according to a copy of the terms included in NLRB’s June 18 complaint

By requiring the agreements, NLRB officials claimed, Mount Sinai is “interfering with, restraining, and coercing employees” in violation of the National Labor Relations Act. The health system’s “unfair labor practices” affects commerce as outlined under the law, according to the NLRB. The Act bans employers from burdening or obstructing commerce or the free flow of commerce.

Mount Sinai did not respond to requests for comment.

The NLRB’s complaint follows a landmark decision by the Federal Trade Commission (FTC) to ban noncompete agreements nationwide. In April 2024, the FTC voted to prohibit noncompetes indefinitely in an effort to protect workers.

“Noncompete clauses keep wages low, suppress new ideas, and rob the American economy of dynamism, including from the more than 8500 new startups that would be created a year once noncompetes are banned,” FTC Chair Lina M. Khan said in a statement. “The FTC’s final rule to ban noncompetes will ensure Americans have the freedom to pursue a new job, start a new business, or bring a new idea to market.”

Business groups and agencies have since sued to challenge against the ban, including the Chamber of Commerce. The Chamber and other business groups argue that noncompete agreements are important for companies to protect trade secrets, shield recruiting investments, and hide confidential information. The lawsuits are ongoing. 
 

A Physician Blows the Whistle

An anonymous physician first alerted the NLRB to the contract language in November 2023. The doctor was required the sign the hospital system’s agreement for part-time physicians. The complaint does not say if the employee is still employed by the hospital system. 

To remedy the unfair labor practices alleged, the NLRB seeks an order requiring the health system to rescind the contract language, stop any actions against current or former employees to enforce the provisions, and make whole any employees who suffered financial losses related to the contract terms. 

The allegation against Mount Sinai is among a rising number of grievances filed with the NLRB that claim unfair labor practices. During the first 6 months of fiscal year 2024, unfair labor practice charges filed across the NLRB’s field offices increased 7% — from 9612 in 2023 to 10,278 in 2024, according to a news release

NLRB, meanwhile has been cracking down on anticompetitive labor practices and confidentiality provisions that prevent employees from speaking out. 

In a February 2023 decision for instance, NLRB ruled that an employer violates the National Labor Relations Act by offering severance agreements to workers that include restrictive confidentiality and nondisparagement terms. In 2022, the NLRB and the Federal Trade Commission forged a partnership to more widely combat unfair, anticompetitive, and deceptive business practices. 

“Noncompete provisions reasonably tend to chill employees in the exercise of Section 7 rights when the provisions could reasonably be construed by employees to deny them the ability to quit or change jobs by cutting off their access to other employment opportunities that they are qualified for,” NLRB General Counsel Jennifer Abruzzo said in a 2023 release

Ms. Abruzzo stressed in a memo that NLR Act is committed to an interagency approach to restrictions on the exercise of employee rights, “including limits to workers’ job mobility, information sharing, and referrals to other agencies.” 

Mount Sinai Health System must respond to the NLRB’s complaint by July 16, and an administrative law judge is scheduled to hear the case on September 24.

A version of this article first appeared on Medscape.com.

Mount Sinai Health System in New York City is forcing part-time physicians to sign employment contracts that violate their labor rights, according to a June 2024 complaint by the National Labor Relations Board (NLRB). 

The complaint stems from no-poaching and confidentiality clauses in the agreements required as a condition of employment, NLRB officials alleged.

The contracts state that, for 1 year following termination, part-time physicians may not recruit, solicit, or induce to terminate the employment of any hospital system employee or independent contractor, according to a copy of the terms included in NLRB’s June 18 complaint

By requiring the agreements, NLRB officials claimed, Mount Sinai is “interfering with, restraining, and coercing employees” in violation of the National Labor Relations Act. The health system’s “unfair labor practices” affects commerce as outlined under the law, according to the NLRB. The Act bans employers from burdening or obstructing commerce or the free flow of commerce.

Mount Sinai did not respond to requests for comment.

The NLRB’s complaint follows a landmark decision by the Federal Trade Commission (FTC) to ban noncompete agreements nationwide. In April 2024, the FTC voted to prohibit noncompetes indefinitely in an effort to protect workers.

“Noncompete clauses keep wages low, suppress new ideas, and rob the American economy of dynamism, including from the more than 8500 new startups that would be created a year once noncompetes are banned,” FTC Chair Lina M. Khan said in a statement. “The FTC’s final rule to ban noncompetes will ensure Americans have the freedom to pursue a new job, start a new business, or bring a new idea to market.”

Business groups and agencies have since sued to challenge against the ban, including the Chamber of Commerce. The Chamber and other business groups argue that noncompete agreements are important for companies to protect trade secrets, shield recruiting investments, and hide confidential information. The lawsuits are ongoing. 
 

A Physician Blows the Whistle

An anonymous physician first alerted the NLRB to the contract language in November 2023. The doctor was required the sign the hospital system’s agreement for part-time physicians. The complaint does not say if the employee is still employed by the hospital system. 

To remedy the unfair labor practices alleged, the NLRB seeks an order requiring the health system to rescind the contract language, stop any actions against current or former employees to enforce the provisions, and make whole any employees who suffered financial losses related to the contract terms. 

The allegation against Mount Sinai is among a rising number of grievances filed with the NLRB that claim unfair labor practices. During the first 6 months of fiscal year 2024, unfair labor practice charges filed across the NLRB’s field offices increased 7% — from 9612 in 2023 to 10,278 in 2024, according to a news release

NLRB, meanwhile has been cracking down on anticompetitive labor practices and confidentiality provisions that prevent employees from speaking out. 

In a February 2023 decision for instance, NLRB ruled that an employer violates the National Labor Relations Act by offering severance agreements to workers that include restrictive confidentiality and nondisparagement terms. In 2022, the NLRB and the Federal Trade Commission forged a partnership to more widely combat unfair, anticompetitive, and deceptive business practices. 

“Noncompete provisions reasonably tend to chill employees in the exercise of Section 7 rights when the provisions could reasonably be construed by employees to deny them the ability to quit or change jobs by cutting off their access to other employment opportunities that they are qualified for,” NLRB General Counsel Jennifer Abruzzo said in a 2023 release

Ms. Abruzzo stressed in a memo that NLR Act is committed to an interagency approach to restrictions on the exercise of employee rights, “including limits to workers’ job mobility, information sharing, and referrals to other agencies.” 

Mount Sinai Health System must respond to the NLRB’s complaint by July 16, and an administrative law judge is scheduled to hear the case on September 24.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Anxiety a Prodromal Feature of Parkinson’s Disease?

Article Type
Changed

Individuals with anxiety have at least a twofold higher risk of developing Parkinson’s disease than those without anxiety, new research suggested.

Investigators drew on 10-year data from primary care registry to compare almost 110,000 patients who developed anxiety after the age of 50 years with close to 900,000 matched controls without anxiety.

After adjusting for a variety of sociodemographic, lifestyle, psychiatric, and neurological factors, they found that the risk of developing Parkinson’s disease was double in those with anxiety, compared with controls.

“Anxiety is known to be a feature of the early stages of Parkinson’s disease, but prior to our study, the prospective risk of Parkinson’s in those over the age of 50 with new-onset anxiety was unknown,” colead author Juan Bazo Alvarez, a senior research fellow in the Division of Epidemiology and Health at University College London, London, England, said in a news release.

The study was published online in the British Journal of General Practice.

The presence of anxiety is increased in prodromal Parkinson’s disease, but the prospective risk for Parkinson’s disease in those aged 50 years or older with new-onset anxiety was largely unknown.

Investigators analyzed data from a large UK primary care dataset that includes all people aged between 50 and 99 years who were registered with a participating practice from Jan. 1, 2008, to Dec. 31, 2018.

They identified 109,435 people (35% men) with more than one anxiety record in the database but no previous record of anxiety for 1 year or more and 878,256 people (37% men) with no history of anxiety (control group).

Features of Parkinson’s disease such as sleep problems, depression, tremor, and impaired balance were then tracked from the point of the anxiety diagnosis until 1 year before the Parkinson’s disease diagnosis.

Among those with anxiety, 331 developed Parkinson’s disease during the follow-up period, with a median time to diagnosis of 4.9 years after the first recorded episode of anxiety.

The incidence of Parkinson’s disease was 1.2 per 1000 person-years (95% CI, 0.92-1.13) in those with anxiety versus 0.49 (95% CI, 0.47-0.52) in those without anxiety.

After adjustment for age, sex, social deprivation, lifestyle factors, severe mental illness, head trauma, and dementia, the risk for Parkinson’s disease was double in those with anxiety, compared with the non-anxiety group (hazard ratio, 2.1; 95% CI, 1.9-2.4).

Individuals without anxiety also developed Parkinson’s disease later than those with anxiety.

The researchers identified specific symptoms that were associated with later development of Parkinson’s disease in those with anxiety, including depression, sleep disturbance, fatigue, and cognitive impairment, among other symptoms.

“The results suggest that there is a strong association between anxiety and diagnosis of Parkinson’s disease in patients aged over 50 years who present with a new diagnosis of anxiety,” the authors wrote. “This provides evidence for anxiety as a prodromal presentation of Parkinson’s disease.”

Future research “should explore anxiety in relation to other prodromal symptoms and how this symptom complex is associated with the incidence of Parkinson’s disease,” the researchers wrote. Doing so “may lead to earlier diagnosis and better management of Parkinson’s disease.”

This study was funded by the European Union. Specific authors received funding from the National Institute for Health and Care Research and the Alzheimer’s Society Clinical Training Fellowship program. The authors declared no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Individuals with anxiety have at least a twofold higher risk of developing Parkinson’s disease than those without anxiety, new research suggested.

Investigators drew on 10-year data from primary care registry to compare almost 110,000 patients who developed anxiety after the age of 50 years with close to 900,000 matched controls without anxiety.

After adjusting for a variety of sociodemographic, lifestyle, psychiatric, and neurological factors, they found that the risk of developing Parkinson’s disease was double in those with anxiety, compared with controls.

“Anxiety is known to be a feature of the early stages of Parkinson’s disease, but prior to our study, the prospective risk of Parkinson’s in those over the age of 50 with new-onset anxiety was unknown,” colead author Juan Bazo Alvarez, a senior research fellow in the Division of Epidemiology and Health at University College London, London, England, said in a news release.

The study was published online in the British Journal of General Practice.

The presence of anxiety is increased in prodromal Parkinson’s disease, but the prospective risk for Parkinson’s disease in those aged 50 years or older with new-onset anxiety was largely unknown.

Investigators analyzed data from a large UK primary care dataset that includes all people aged between 50 and 99 years who were registered with a participating practice from Jan. 1, 2008, to Dec. 31, 2018.

They identified 109,435 people (35% men) with more than one anxiety record in the database but no previous record of anxiety for 1 year or more and 878,256 people (37% men) with no history of anxiety (control group).

Features of Parkinson’s disease such as sleep problems, depression, tremor, and impaired balance were then tracked from the point of the anxiety diagnosis until 1 year before the Parkinson’s disease diagnosis.

Among those with anxiety, 331 developed Parkinson’s disease during the follow-up period, with a median time to diagnosis of 4.9 years after the first recorded episode of anxiety.

The incidence of Parkinson’s disease was 1.2 per 1000 person-years (95% CI, 0.92-1.13) in those with anxiety versus 0.49 (95% CI, 0.47-0.52) in those without anxiety.

After adjustment for age, sex, social deprivation, lifestyle factors, severe mental illness, head trauma, and dementia, the risk for Parkinson’s disease was double in those with anxiety, compared with the non-anxiety group (hazard ratio, 2.1; 95% CI, 1.9-2.4).

Individuals without anxiety also developed Parkinson’s disease later than those with anxiety.

The researchers identified specific symptoms that were associated with later development of Parkinson’s disease in those with anxiety, including depression, sleep disturbance, fatigue, and cognitive impairment, among other symptoms.

“The results suggest that there is a strong association between anxiety and diagnosis of Parkinson’s disease in patients aged over 50 years who present with a new diagnosis of anxiety,” the authors wrote. “This provides evidence for anxiety as a prodromal presentation of Parkinson’s disease.”

Future research “should explore anxiety in relation to other prodromal symptoms and how this symptom complex is associated with the incidence of Parkinson’s disease,” the researchers wrote. Doing so “may lead to earlier diagnosis and better management of Parkinson’s disease.”

This study was funded by the European Union. Specific authors received funding from the National Institute for Health and Care Research and the Alzheimer’s Society Clinical Training Fellowship program. The authors declared no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Individuals with anxiety have at least a twofold higher risk of developing Parkinson’s disease than those without anxiety, new research suggested.

Investigators drew on 10-year data from primary care registry to compare almost 110,000 patients who developed anxiety after the age of 50 years with close to 900,000 matched controls without anxiety.

After adjusting for a variety of sociodemographic, lifestyle, psychiatric, and neurological factors, they found that the risk of developing Parkinson’s disease was double in those with anxiety, compared with controls.

“Anxiety is known to be a feature of the early stages of Parkinson’s disease, but prior to our study, the prospective risk of Parkinson’s in those over the age of 50 with new-onset anxiety was unknown,” colead author Juan Bazo Alvarez, a senior research fellow in the Division of Epidemiology and Health at University College London, London, England, said in a news release.

The study was published online in the British Journal of General Practice.

The presence of anxiety is increased in prodromal Parkinson’s disease, but the prospective risk for Parkinson’s disease in those aged 50 years or older with new-onset anxiety was largely unknown.

Investigators analyzed data from a large UK primary care dataset that includes all people aged between 50 and 99 years who were registered with a participating practice from Jan. 1, 2008, to Dec. 31, 2018.

They identified 109,435 people (35% men) with more than one anxiety record in the database but no previous record of anxiety for 1 year or more and 878,256 people (37% men) with no history of anxiety (control group).

Features of Parkinson’s disease such as sleep problems, depression, tremor, and impaired balance were then tracked from the point of the anxiety diagnosis until 1 year before the Parkinson’s disease diagnosis.

Among those with anxiety, 331 developed Parkinson’s disease during the follow-up period, with a median time to diagnosis of 4.9 years after the first recorded episode of anxiety.

The incidence of Parkinson’s disease was 1.2 per 1000 person-years (95% CI, 0.92-1.13) in those with anxiety versus 0.49 (95% CI, 0.47-0.52) in those without anxiety.

After adjustment for age, sex, social deprivation, lifestyle factors, severe mental illness, head trauma, and dementia, the risk for Parkinson’s disease was double in those with anxiety, compared with the non-anxiety group (hazard ratio, 2.1; 95% CI, 1.9-2.4).

Individuals without anxiety also developed Parkinson’s disease later than those with anxiety.

The researchers identified specific symptoms that were associated with later development of Parkinson’s disease in those with anxiety, including depression, sleep disturbance, fatigue, and cognitive impairment, among other symptoms.

“The results suggest that there is a strong association between anxiety and diagnosis of Parkinson’s disease in patients aged over 50 years who present with a new diagnosis of anxiety,” the authors wrote. “This provides evidence for anxiety as a prodromal presentation of Parkinson’s disease.”

Future research “should explore anxiety in relation to other prodromal symptoms and how this symptom complex is associated with the incidence of Parkinson’s disease,” the researchers wrote. Doing so “may lead to earlier diagnosis and better management of Parkinson’s disease.”

This study was funded by the European Union. Specific authors received funding from the National Institute for Health and Care Research and the Alzheimer’s Society Clinical Training Fellowship program. The authors declared no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE BRITISH JOURNAL OF GENERAL PRACTICE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Benzos Are Hard on the Brain, But Do They Raise Dementia Risk?

Article Type
Changed

New research supports current guidelines cautioning against long-term use of benzodiazepines.

The study of more than 5000 older adults found that benzodiazepine use was associated with an accelerated reduction in the volume of the hippocampus and amygdala — brain regions involved in memory and mood regulation. However, benzodiazepine use overall was not associated with an increased risk for dementia.

The findings suggest that benzodiazepine use “may have subtle, long-term impact on brain health,” lead investigator Frank Wolters, MD, PhD, with Erasmus University Medical Center, Rotterdam, the Netherlands, and colleagues wrote.

The study was published online in BMC Medicine.
 

Conflicting Evidence 

Benzodiazepines are commonly prescribed in older adults for anxiety and sleep disorders. Though the short-term cognitive side effects are well documented, the long-term impact on neurodegeneration and dementia risk remains unclear. Some studies have linked benzodiazepine use to an increased risk for dementia, whereas others have not.

Dr. Wolters and colleagues assessed the effect of benzodiazepine use on long-term dementia risk and on imaging markers of neurodegeneration in 5443 cognitively healthy adults (mean age, 71 years; 57% women) from the population-based Rotterdam Study. 

Benzodiazepine use between 1991 and 2008 was determined using pharmacy dispensing records, and dementia incidence was determined from medical records. 

Half of the participants had used benzodiazepines at any time in the 15 years before baseline (2005-2008); 47% used anxiolytics, 20% used sedative-hypnotics, 34% used both, and 13% were still using the drugs at the baseline assessment. 

During an average follow-up of 11 years, 13% of participants developed dementia. 

Overall, use of benzodiazepines was not associated with dementia risk, compared with never-use (hazard ratio [HR], 1.06), irrespective of cumulative dose. 

The risk for dementia was somewhat higher with any use of anxiolytics than with sedative-hypnotics (HR, 1.17 vs HR, 0.92), although neither was statistically significant. The highest risk estimates were observed for high cumulative dose of anxiolytics (HR, 1.33). 

Sensitivity analyses of the two most commonly used anxiolytics found no differences in risk between use of short half-life oxazepam and long half-life diazepam (HR, 1.01 and HR, 1.06, respectively, for ever-use, compared with never-use for oxazepam and diazepam).
 

Brain Atrophy

The researchers investigated potential associations between benzodiazepine use and brain volumes using brain MRI imaging from 4836 participants.

They found that current use of a benzodiazepine at baseline was significantly associated with lower total brain volume — as well as lower hippocampus, amygdala, and thalamus volume cross-sectionally — and with accelerated volume loss of the hippocampus and, to a lesser extent, amygdala longitudinally. 

Imaging findings did not differ by type of benzodiazepine used or cumulative dose. 

“Given the availability of effective alternative pharmacological and nonpharmacological treatments for anxiety and sleep problems, it is important to carefully consider the necessity of prolonged benzodiazepine use in light of potential detrimental effects on brain health,” the authors wrote. 
 

Risks Go Beyond the Brain

Commenting on the study, Shaheen Lakhan, MD, PhD, a neurologist and researcher based in Miami, Florida, noted that “chronic benzodiazepine use may reduce neuroplasticity, potentially interfering with the brain’s ability to form new connections and adapt.

“Long-term use can lead to down-regulation of GABA receptors, altering the brain’s natural inhibitory mechanisms and potentially contributing to tolerance and withdrawal symptoms. Prolonged use can also disrupt the balance of various neurotransmitter systems beyond just GABA, potentially affecting mood, cognition, and overall brain function,” said Dr. Lakhan, who was not involved in the study. 

“While the literature is mixed on chronic benzodiazepine use and dementia risk, prolonged use has consistently been associated with accelerated volume loss in certain brain regions, particularly the hippocampus and amygdala,” which are responsible for memory, learning, and emotional regulation, he noted. 

“Beyond cognitive impairments and brain volume loss, chronic benzodiazepine use is associated with tolerance and dependence, potential for abuse, interactions with other drugs, and increased fall risk, especially in older adults,” Dr. Lakhan added.

Current guidelines discourage long-term use of benzodiazepines because of risk for psychological and physical dependence; falls; and cognitive impairment, especially in older adults. Nevertheless, research shows that 30%-40% of older benzodiazepine users stay on the medication beyond the recommended period of several weeks.

Donovan T. Maust, MD, Department of Psychiatry, University of Michigan Medical School, Ann Arbor, said in an interview these new findings are consistent with other recently published observational research that suggest benzodiazepine use is not linked to dementia risk. 

“I realize that such meta-analyses that find a positive relationship between benzodiazepines and dementia are out there, but they include older, less rigorous studies,” said Dr. Maust, who was not part of the new study. “In my opinion, the jury is not still out on this topic. However, there are plenty of other reasons to avoid them — and in particular, starting them — in older adults, most notably the increased risk of fall injury as well as increased overdose risk when taken along with opioids.”

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

New research supports current guidelines cautioning against long-term use of benzodiazepines.

The study of more than 5000 older adults found that benzodiazepine use was associated with an accelerated reduction in the volume of the hippocampus and amygdala — brain regions involved in memory and mood regulation. However, benzodiazepine use overall was not associated with an increased risk for dementia.

The findings suggest that benzodiazepine use “may have subtle, long-term impact on brain health,” lead investigator Frank Wolters, MD, PhD, with Erasmus University Medical Center, Rotterdam, the Netherlands, and colleagues wrote.

The study was published online in BMC Medicine.
 

Conflicting Evidence 

Benzodiazepines are commonly prescribed in older adults for anxiety and sleep disorders. Though the short-term cognitive side effects are well documented, the long-term impact on neurodegeneration and dementia risk remains unclear. Some studies have linked benzodiazepine use to an increased risk for dementia, whereas others have not.

Dr. Wolters and colleagues assessed the effect of benzodiazepine use on long-term dementia risk and on imaging markers of neurodegeneration in 5443 cognitively healthy adults (mean age, 71 years; 57% women) from the population-based Rotterdam Study. 

Benzodiazepine use between 1991 and 2008 was determined using pharmacy dispensing records, and dementia incidence was determined from medical records. 

Half of the participants had used benzodiazepines at any time in the 15 years before baseline (2005-2008); 47% used anxiolytics, 20% used sedative-hypnotics, 34% used both, and 13% were still using the drugs at the baseline assessment. 

During an average follow-up of 11 years, 13% of participants developed dementia. 

Overall, use of benzodiazepines was not associated with dementia risk, compared with never-use (hazard ratio [HR], 1.06), irrespective of cumulative dose. 

The risk for dementia was somewhat higher with any use of anxiolytics than with sedative-hypnotics (HR, 1.17 vs HR, 0.92), although neither was statistically significant. The highest risk estimates were observed for high cumulative dose of anxiolytics (HR, 1.33). 

Sensitivity analyses of the two most commonly used anxiolytics found no differences in risk between use of short half-life oxazepam and long half-life diazepam (HR, 1.01 and HR, 1.06, respectively, for ever-use, compared with never-use for oxazepam and diazepam).
 

Brain Atrophy

The researchers investigated potential associations between benzodiazepine use and brain volumes using brain MRI imaging from 4836 participants.

They found that current use of a benzodiazepine at baseline was significantly associated with lower total brain volume — as well as lower hippocampus, amygdala, and thalamus volume cross-sectionally — and with accelerated volume loss of the hippocampus and, to a lesser extent, amygdala longitudinally. 

Imaging findings did not differ by type of benzodiazepine used or cumulative dose. 

“Given the availability of effective alternative pharmacological and nonpharmacological treatments for anxiety and sleep problems, it is important to carefully consider the necessity of prolonged benzodiazepine use in light of potential detrimental effects on brain health,” the authors wrote. 
 

Risks Go Beyond the Brain

Commenting on the study, Shaheen Lakhan, MD, PhD, a neurologist and researcher based in Miami, Florida, noted that “chronic benzodiazepine use may reduce neuroplasticity, potentially interfering with the brain’s ability to form new connections and adapt.

“Long-term use can lead to down-regulation of GABA receptors, altering the brain’s natural inhibitory mechanisms and potentially contributing to tolerance and withdrawal symptoms. Prolonged use can also disrupt the balance of various neurotransmitter systems beyond just GABA, potentially affecting mood, cognition, and overall brain function,” said Dr. Lakhan, who was not involved in the study. 

“While the literature is mixed on chronic benzodiazepine use and dementia risk, prolonged use has consistently been associated with accelerated volume loss in certain brain regions, particularly the hippocampus and amygdala,” which are responsible for memory, learning, and emotional regulation, he noted. 

“Beyond cognitive impairments and brain volume loss, chronic benzodiazepine use is associated with tolerance and dependence, potential for abuse, interactions with other drugs, and increased fall risk, especially in older adults,” Dr. Lakhan added.

Current guidelines discourage long-term use of benzodiazepines because of risk for psychological and physical dependence; falls; and cognitive impairment, especially in older adults. Nevertheless, research shows that 30%-40% of older benzodiazepine users stay on the medication beyond the recommended period of several weeks.

Donovan T. Maust, MD, Department of Psychiatry, University of Michigan Medical School, Ann Arbor, said in an interview these new findings are consistent with other recently published observational research that suggest benzodiazepine use is not linked to dementia risk. 

“I realize that such meta-analyses that find a positive relationship between benzodiazepines and dementia are out there, but they include older, less rigorous studies,” said Dr. Maust, who was not part of the new study. “In my opinion, the jury is not still out on this topic. However, there are plenty of other reasons to avoid them — and in particular, starting them — in older adults, most notably the increased risk of fall injury as well as increased overdose risk when taken along with opioids.”

A version of this article first appeared on Medscape.com.

New research supports current guidelines cautioning against long-term use of benzodiazepines.

The study of more than 5000 older adults found that benzodiazepine use was associated with an accelerated reduction in the volume of the hippocampus and amygdala — brain regions involved in memory and mood regulation. However, benzodiazepine use overall was not associated with an increased risk for dementia.

The findings suggest that benzodiazepine use “may have subtle, long-term impact on brain health,” lead investigator Frank Wolters, MD, PhD, with Erasmus University Medical Center, Rotterdam, the Netherlands, and colleagues wrote.

The study was published online in BMC Medicine.
 

Conflicting Evidence 

Benzodiazepines are commonly prescribed in older adults for anxiety and sleep disorders. Though the short-term cognitive side effects are well documented, the long-term impact on neurodegeneration and dementia risk remains unclear. Some studies have linked benzodiazepine use to an increased risk for dementia, whereas others have not.

Dr. Wolters and colleagues assessed the effect of benzodiazepine use on long-term dementia risk and on imaging markers of neurodegeneration in 5443 cognitively healthy adults (mean age, 71 years; 57% women) from the population-based Rotterdam Study. 

Benzodiazepine use between 1991 and 2008 was determined using pharmacy dispensing records, and dementia incidence was determined from medical records. 

Half of the participants had used benzodiazepines at any time in the 15 years before baseline (2005-2008); 47% used anxiolytics, 20% used sedative-hypnotics, 34% used both, and 13% were still using the drugs at the baseline assessment. 

During an average follow-up of 11 years, 13% of participants developed dementia. 

Overall, use of benzodiazepines was not associated with dementia risk, compared with never-use (hazard ratio [HR], 1.06), irrespective of cumulative dose. 

The risk for dementia was somewhat higher with any use of anxiolytics than with sedative-hypnotics (HR, 1.17 vs HR, 0.92), although neither was statistically significant. The highest risk estimates were observed for high cumulative dose of anxiolytics (HR, 1.33). 

Sensitivity analyses of the two most commonly used anxiolytics found no differences in risk between use of short half-life oxazepam and long half-life diazepam (HR, 1.01 and HR, 1.06, respectively, for ever-use, compared with never-use for oxazepam and diazepam).
 

Brain Atrophy

The researchers investigated potential associations between benzodiazepine use and brain volumes using brain MRI imaging from 4836 participants.

They found that current use of a benzodiazepine at baseline was significantly associated with lower total brain volume — as well as lower hippocampus, amygdala, and thalamus volume cross-sectionally — and with accelerated volume loss of the hippocampus and, to a lesser extent, amygdala longitudinally. 

Imaging findings did not differ by type of benzodiazepine used or cumulative dose. 

“Given the availability of effective alternative pharmacological and nonpharmacological treatments for anxiety and sleep problems, it is important to carefully consider the necessity of prolonged benzodiazepine use in light of potential detrimental effects on brain health,” the authors wrote. 
 

Risks Go Beyond the Brain

Commenting on the study, Shaheen Lakhan, MD, PhD, a neurologist and researcher based in Miami, Florida, noted that “chronic benzodiazepine use may reduce neuroplasticity, potentially interfering with the brain’s ability to form new connections and adapt.

“Long-term use can lead to down-regulation of GABA receptors, altering the brain’s natural inhibitory mechanisms and potentially contributing to tolerance and withdrawal symptoms. Prolonged use can also disrupt the balance of various neurotransmitter systems beyond just GABA, potentially affecting mood, cognition, and overall brain function,” said Dr. Lakhan, who was not involved in the study. 

“While the literature is mixed on chronic benzodiazepine use and dementia risk, prolonged use has consistently been associated with accelerated volume loss in certain brain regions, particularly the hippocampus and amygdala,” which are responsible for memory, learning, and emotional regulation, he noted. 

“Beyond cognitive impairments and brain volume loss, chronic benzodiazepine use is associated with tolerance and dependence, potential for abuse, interactions with other drugs, and increased fall risk, especially in older adults,” Dr. Lakhan added.

Current guidelines discourage long-term use of benzodiazepines because of risk for psychological and physical dependence; falls; and cognitive impairment, especially in older adults. Nevertheless, research shows that 30%-40% of older benzodiazepine users stay on the medication beyond the recommended period of several weeks.

Donovan T. Maust, MD, Department of Psychiatry, University of Michigan Medical School, Ann Arbor, said in an interview these new findings are consistent with other recently published observational research that suggest benzodiazepine use is not linked to dementia risk. 

“I realize that such meta-analyses that find a positive relationship between benzodiazepines and dementia are out there, but they include older, less rigorous studies,” said Dr. Maust, who was not part of the new study. “In my opinion, the jury is not still out on this topic. However, there are plenty of other reasons to avoid them — and in particular, starting them — in older adults, most notably the increased risk of fall injury as well as increased overdose risk when taken along with opioids.”

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM BMC MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Medication Overuse in Mental Health Facilities: Not the Answer, Regardless of Consent, Says Ethicist

Article Type
Changed

 

This transcript has been edited for clarity.

There’s a growing scandal in mental health care. Recent studies are showing that certain medications that basically are used to, if you will, quiet patients — antipsychotic drugs — are being overused, particularly in facilities that serve poorer people and people who are minorities. This situation is utterly, ethically unacceptable and it’s something that we are starting to get really pressed to solve. 

Part of this is due to the fact that numbers of caregivers are in short supply. We need to get more people trained. We need to get more mental health providers at all levels into facilities in order to provide care, and not substitute that inability to have a provider present and minimize risk to patients by having drug-induced sleepiness, soporific behavior, or, if you will, snowing them just because we don’t have enough people to keep an eye on them. Furthermore, we can’t let them engage in some activities, even things like walking around, because we’re worried about falls. The nursing homes or mental health facilities don’t want anybody to get injured, much less killed, because that’s going to really bring government agencies down on them.

What do we do, aside from trying to get more numbers in there? California came up with a law not too long ago that basically put the burden of using these drugs on consent. They passed a law that said the patient, before going under and being administered any type of psychoactive drug, has to consent; or if they’re really unable to do that, their relative or next of kin should have to consent.

California law now puts the burden on getting consent from the patient in order to use these drugs. It’s not a good solution. It still permits the use of the drugs to substitute for the inability to provide adequate numbers of people to provide care in safe environments. It’s almost like saying, “We know you’re going into a dangerous place. We can’t really reduce the danger, so we’re going to make sure that you stay in your seat. You better consent to that because otherwise things could not go well for you in this mental institution.” 

That’s not a sound argument for the use of informed consent. Moreover, I’m very skeptical that many of these people in mental institutions do have the capacity to either say, “Fine, give me psychoactive drugs if I have to stay here,” or “No, I don’t want that. I’ll take my chances.”

They’re vulnerable people. Many of them may not be fully incompetent, but they often have compromised competency. Relatives may be thinking, Well, the right thing to do is just to make sure they don’t get hurt or injure themselves. Yes, give them the drugs. 

Consent, while I support it, is not the solution to what is fundamentally an infrastructure problem, a personnel problem, and one of the shames of American healthcare, which is lousy long-term mental health care. For too many people, their care is in the street. For too many people, their care is taking place in institutions that have dangerous designs where people either get injured, can’t provide enough spacing, or just don’t have the people to do it. 

Let’s move to fix the mental health care system and not be in a situation where we say to people, “The system stinks and you’re at risk. Is it okay with you if we drug you because we can’t think of any other way to keep you safe, given the rotten nature of the institutions that we’ve got?” 

Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He disclosed ties with Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position) and serves as a contributing author and adviser for Medscape.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

This transcript has been edited for clarity.

There’s a growing scandal in mental health care. Recent studies are showing that certain medications that basically are used to, if you will, quiet patients — antipsychotic drugs — are being overused, particularly in facilities that serve poorer people and people who are minorities. This situation is utterly, ethically unacceptable and it’s something that we are starting to get really pressed to solve. 

Part of this is due to the fact that numbers of caregivers are in short supply. We need to get more people trained. We need to get more mental health providers at all levels into facilities in order to provide care, and not substitute that inability to have a provider present and minimize risk to patients by having drug-induced sleepiness, soporific behavior, or, if you will, snowing them just because we don’t have enough people to keep an eye on them. Furthermore, we can’t let them engage in some activities, even things like walking around, because we’re worried about falls. The nursing homes or mental health facilities don’t want anybody to get injured, much less killed, because that’s going to really bring government agencies down on them.

What do we do, aside from trying to get more numbers in there? California came up with a law not too long ago that basically put the burden of using these drugs on consent. They passed a law that said the patient, before going under and being administered any type of psychoactive drug, has to consent; or if they’re really unable to do that, their relative or next of kin should have to consent.

California law now puts the burden on getting consent from the patient in order to use these drugs. It’s not a good solution. It still permits the use of the drugs to substitute for the inability to provide adequate numbers of people to provide care in safe environments. It’s almost like saying, “We know you’re going into a dangerous place. We can’t really reduce the danger, so we’re going to make sure that you stay in your seat. You better consent to that because otherwise things could not go well for you in this mental institution.” 

That’s not a sound argument for the use of informed consent. Moreover, I’m very skeptical that many of these people in mental institutions do have the capacity to either say, “Fine, give me psychoactive drugs if I have to stay here,” or “No, I don’t want that. I’ll take my chances.”

They’re vulnerable people. Many of them may not be fully incompetent, but they often have compromised competency. Relatives may be thinking, Well, the right thing to do is just to make sure they don’t get hurt or injure themselves. Yes, give them the drugs. 

Consent, while I support it, is not the solution to what is fundamentally an infrastructure problem, a personnel problem, and one of the shames of American healthcare, which is lousy long-term mental health care. For too many people, their care is in the street. For too many people, their care is taking place in institutions that have dangerous designs where people either get injured, can’t provide enough spacing, or just don’t have the people to do it. 

Let’s move to fix the mental health care system and not be in a situation where we say to people, “The system stinks and you’re at risk. Is it okay with you if we drug you because we can’t think of any other way to keep you safe, given the rotten nature of the institutions that we’ve got?” 

Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He disclosed ties with Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position) and serves as a contributing author and adviser for Medscape.

A version of this article first appeared on Medscape.com.

 

This transcript has been edited for clarity.

There’s a growing scandal in mental health care. Recent studies are showing that certain medications that basically are used to, if you will, quiet patients — antipsychotic drugs — are being overused, particularly in facilities that serve poorer people and people who are minorities. This situation is utterly, ethically unacceptable and it’s something that we are starting to get really pressed to solve. 

Part of this is due to the fact that numbers of caregivers are in short supply. We need to get more people trained. We need to get more mental health providers at all levels into facilities in order to provide care, and not substitute that inability to have a provider present and minimize risk to patients by having drug-induced sleepiness, soporific behavior, or, if you will, snowing them just because we don’t have enough people to keep an eye on them. Furthermore, we can’t let them engage in some activities, even things like walking around, because we’re worried about falls. The nursing homes or mental health facilities don’t want anybody to get injured, much less killed, because that’s going to really bring government agencies down on them.

What do we do, aside from trying to get more numbers in there? California came up with a law not too long ago that basically put the burden of using these drugs on consent. They passed a law that said the patient, before going under and being administered any type of psychoactive drug, has to consent; or if they’re really unable to do that, their relative or next of kin should have to consent.

California law now puts the burden on getting consent from the patient in order to use these drugs. It’s not a good solution. It still permits the use of the drugs to substitute for the inability to provide adequate numbers of people to provide care in safe environments. It’s almost like saying, “We know you’re going into a dangerous place. We can’t really reduce the danger, so we’re going to make sure that you stay in your seat. You better consent to that because otherwise things could not go well for you in this mental institution.” 

That’s not a sound argument for the use of informed consent. Moreover, I’m very skeptical that many of these people in mental institutions do have the capacity to either say, “Fine, give me psychoactive drugs if I have to stay here,” or “No, I don’t want that. I’ll take my chances.”

They’re vulnerable people. Many of them may not be fully incompetent, but they often have compromised competency. Relatives may be thinking, Well, the right thing to do is just to make sure they don’t get hurt or injure themselves. Yes, give them the drugs. 

Consent, while I support it, is not the solution to what is fundamentally an infrastructure problem, a personnel problem, and one of the shames of American healthcare, which is lousy long-term mental health care. For too many people, their care is in the street. For too many people, their care is taking place in institutions that have dangerous designs where people either get injured, can’t provide enough spacing, or just don’t have the people to do it. 

Let’s move to fix the mental health care system and not be in a situation where we say to people, “The system stinks and you’re at risk. Is it okay with you if we drug you because we can’t think of any other way to keep you safe, given the rotten nature of the institutions that we’ve got?” 

Dr. Caplan is director, Division of Medical Ethics, New York University Langone Medical Center, New York. He disclosed ties with Johnson & Johnson’s Panel for Compassionate Drug Use (unpaid position) and serves as a contributing author and adviser for Medscape.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cardiovascular Health Becoming a Major Risk Factor for Dementia

Article Type
Changed

In a shifting landscape in dementia risk factors, cardiovascular health is now taking precedence.

That’s according to researchers from University College London (UCL) in the United Kingdom who analyzed 27 papers about dementia that had data collected over more than 70 years. They calculated what share of dementia cases were due to different risk factors. Their findings were recently published in the Lancet Public Health.

Top risk factors for dementia over the years have been hypertension, obesity, diabetes, education, and smoking, according to a news release on the findings. But the prevalence of risk factors has changed over the decades.

Researchers said smoking and education have become less important risk factors because of “population-level interventions,” such as stop-smoking campaigns and compulsory public education. On the other hand, obesity and diabetes rates have increased and become bigger risk factors.

Hypertension remains the greatest risk factor, even though doctors and public health groups are putting more emphasis on managing the condition, the study said.

“Cardiovascular risk factors may have contributed more to dementia risk over time, so these deserve more targeted action for future dementia prevention efforts,” said Naaheed Mukadam, PhD, an associate professor at UCL and the lead author of the study.

Eliminating modifiable risk factors could theoretically prevent 40% of dementia cases, the release said. 

The CDC says that an estimated 5.8 million people in the United States have Alzheimer’s disease and related dementias, including 5.6 million people ages 65 and older and about 200,000 under age 65. The UCL release said an estimated 944,000 in the U.K. have dementia. 

A version of this article first appeared on WebMD.com.

Publications
Topics
Sections

In a shifting landscape in dementia risk factors, cardiovascular health is now taking precedence.

That’s according to researchers from University College London (UCL) in the United Kingdom who analyzed 27 papers about dementia that had data collected over more than 70 years. They calculated what share of dementia cases were due to different risk factors. Their findings were recently published in the Lancet Public Health.

Top risk factors for dementia over the years have been hypertension, obesity, diabetes, education, and smoking, according to a news release on the findings. But the prevalence of risk factors has changed over the decades.

Researchers said smoking and education have become less important risk factors because of “population-level interventions,” such as stop-smoking campaigns and compulsory public education. On the other hand, obesity and diabetes rates have increased and become bigger risk factors.

Hypertension remains the greatest risk factor, even though doctors and public health groups are putting more emphasis on managing the condition, the study said.

“Cardiovascular risk factors may have contributed more to dementia risk over time, so these deserve more targeted action for future dementia prevention efforts,” said Naaheed Mukadam, PhD, an associate professor at UCL and the lead author of the study.

Eliminating modifiable risk factors could theoretically prevent 40% of dementia cases, the release said. 

The CDC says that an estimated 5.8 million people in the United States have Alzheimer’s disease and related dementias, including 5.6 million people ages 65 and older and about 200,000 under age 65. The UCL release said an estimated 944,000 in the U.K. have dementia. 

A version of this article first appeared on WebMD.com.

In a shifting landscape in dementia risk factors, cardiovascular health is now taking precedence.

That’s according to researchers from University College London (UCL) in the United Kingdom who analyzed 27 papers about dementia that had data collected over more than 70 years. They calculated what share of dementia cases were due to different risk factors. Their findings were recently published in the Lancet Public Health.

Top risk factors for dementia over the years have been hypertension, obesity, diabetes, education, and smoking, according to a news release on the findings. But the prevalence of risk factors has changed over the decades.

Researchers said smoking and education have become less important risk factors because of “population-level interventions,” such as stop-smoking campaigns and compulsory public education. On the other hand, obesity and diabetes rates have increased and become bigger risk factors.

Hypertension remains the greatest risk factor, even though doctors and public health groups are putting more emphasis on managing the condition, the study said.

“Cardiovascular risk factors may have contributed more to dementia risk over time, so these deserve more targeted action for future dementia prevention efforts,” said Naaheed Mukadam, PhD, an associate professor at UCL and the lead author of the study.

Eliminating modifiable risk factors could theoretically prevent 40% of dementia cases, the release said. 

The CDC says that an estimated 5.8 million people in the United States have Alzheimer’s disease and related dementias, including 5.6 million people ages 65 and older and about 200,000 under age 65. The UCL release said an estimated 944,000 in the U.K. have dementia. 

A version of this article first appeared on WebMD.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE LANCET PUBLIC HEALTH

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Revised Criteria for Alzheimer’s Diagnosis, Staging Released

Article Type
Changed

A work group convened by the Alzheimer’s Association has released revised biology-based criteria for the diagnosis and staging of Alzheimer’s disease, including a new biomarker classification system that incorporates fluid and imaging biomarkers as well as an updated disease staging system. 

“Plasma markers are here now, and it’s very important to incorporate them into the criteria for diagnosis,” said senior author Maria C. Carrillo, PhD, Alzheimer’s Association chief science officer and medical affairs lead. 

The revised criteria are the first updates since 2018.

“Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine — including cancer, heart disease, and diabetes — and is becoming a unifying concept common to all neurodegenerative diseases,” lead author Clifford Jack Jr, MD, with Mayo Clinic, Rochester, Minnesota, said in a news release from the Alzheimer’s Association. 

“These updates to the diagnostic criteria are needed now because we know more about the underlying biology of Alzheimer’s and we are able to measure those changes,” Dr. Jack added. 

The 2024 revised criteria for diagnosis and staging of Alzheimer’s disease were published online in Alzheimer’s & Dementia
 

Core Biomarkers Defined

The revised criteria define Alzheimer’s disease as a biologic process that begins with the appearance of Alzheimer’s disease neuropathologic change (ADNPC) in the absence of symptoms. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms.

The work group organized Alzheimer’s disease biomarkers into three broad categories: (1) core biomarkers of ADNPC, (2) nonspecific biomarkers that are important in Alzheimer’s disease but are also involved in other brain diseases, and (3) biomarkers of diseases or conditions that commonly coexist with Alzheimer’s disease.

Core Alzheimer’s biomarkers are subdivided into Core 1 and Core 2. 

Core 1 biomarkers become abnormal early in the disease course and directly measure either amyloid plaques or phosphorylated tau (p-tau). They include amyloid PET; cerebrospinal fluid (CSF) amyloid beta 42/40 ratio, CSF p-tau181/amyloid beta 42 ratio, and CSF total (t)-tau/amyloid beta 42 ratio; and “accurate” plasma biomarkers, such as p-tau217. 

“An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of Alzheimer’s disease and to inform clinical decision making [sic] throughout the disease continuum,” the work group wrote. 

Core 2 biomarkers become abnormal later in the disease process and are more closely linked with the onset of symptoms. Core 2 biomarkers include tau PET and certain soluble tau fragments associated with tau proteinopathy (eg, MTBR-tau243) but also pT205 and nonphosphorylated mid-region tau fragments. 

Core 2 biomarkers, when combined with Core 1, may be used to stage biologic disease severity; abnormal Core 2 biomarkers “increase confidence that Alzheimer’s disease is contributing to symptoms,” the work group noted. 

The revised criteria give clinicians “the flexibility to use plasma or PET scans or CSF,” Dr. Carrillo said. “They will have several tools that they can choose from and offer this variety of tools to their patients. We need different tools for different individuals. There will be differences in coverage and access to these diagnostics.” 

The revised criteria also include an integrated biologic and clinical staging scheme that acknowledges the fact that common co-pathologies, cognitive reserve, and resistance may modify relationships between clinical and biologic Alzheimer’s disease stages. 
 

 

 

Formal Guidelines to Come 

The work group noted that currently, the clinical use of Alzheimer’s disease biomarkers is intended for the evaluation of symptomatic patients, not cognitively unimpaired individuals.

Disease-targeted therapies have not yet been approved for cognitively unimpaired individuals. For this reason, the work group currently recommends against diagnostic testing in cognitively unimpaired individuals outside the context of observational or therapeutic research studies. 

This recommendation would change in the future if disease-targeted therapies that are currently being evaluated in trials demonstrate a benefit in preventing cognitive decline and are approved for use in preclinical Alzheimer’s disease, they wrote. 

They emphasize that the revised criteria are not intended to provide step-by-step clinical practice guidelines for clinicians. Rather, they provide general principles to inform diagnosis and staging of Alzheimer’s disease that reflect current science.

“This is just the beginning,” said Dr. Carrillo. “This is a gathering of the evidence to date and putting it in one place so we can have a consensus and actually a way to test it and make it better as we add new science.”

This also serves as a “springboard” for the Alzheimer’s Association to create formal clinical guidelines. “That will come, hopefully, over the next 12 months. We’ll be working on it, and we hope to have that in 2025,” Dr. Carrillo said. 

The revised criteria also emphasize the role of the clinician. 

“The biologically based diagnosis of Alzheimer’s disease is meant to assist, rather than supplant, the clinical evaluation of individuals with cognitive impairment,” the work group wrote in a related commentary published online in Nature Medicine

Recent diagnostics and therapeutic developments “herald a virtuous cycle in which improvements in diagnostic methods enable more sophisticated treatment approaches, which in turn steer advances in diagnostic methods,” they continued. “An unchanging principle, however, is that effective treatment will always rely on the ability to diagnose and stage the biology driving the disease process.”

Funding for this research was provided by the National Institutes of Health, Alexander family professorship, GHR Foundation, Alzheimer’s Association, Veterans Administration, Life Molecular Imaging, Michael J. Fox Foundation for Parkinson’s Research, Avid Radiopharmaceuticals, Eli Lilly, Gates Foundation, Biogen, C2N Diagnostics, Eisai, Fujirebio, GE Healthcare, Roche, National Institute on Aging, Roche/Genentech, BrightFocus Foundation, Hoffmann-La Roche, Novo Nordisk, Toyama, National MS Society, Alzheimer Drug Discovery Foundation, and others. A complete list of donors and disclosures is included in the original article.

 A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A work group convened by the Alzheimer’s Association has released revised biology-based criteria for the diagnosis and staging of Alzheimer’s disease, including a new biomarker classification system that incorporates fluid and imaging biomarkers as well as an updated disease staging system. 

“Plasma markers are here now, and it’s very important to incorporate them into the criteria for diagnosis,” said senior author Maria C. Carrillo, PhD, Alzheimer’s Association chief science officer and medical affairs lead. 

The revised criteria are the first updates since 2018.

“Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine — including cancer, heart disease, and diabetes — and is becoming a unifying concept common to all neurodegenerative diseases,” lead author Clifford Jack Jr, MD, with Mayo Clinic, Rochester, Minnesota, said in a news release from the Alzheimer’s Association. 

“These updates to the diagnostic criteria are needed now because we know more about the underlying biology of Alzheimer’s and we are able to measure those changes,” Dr. Jack added. 

The 2024 revised criteria for diagnosis and staging of Alzheimer’s disease were published online in Alzheimer’s & Dementia
 

Core Biomarkers Defined

The revised criteria define Alzheimer’s disease as a biologic process that begins with the appearance of Alzheimer’s disease neuropathologic change (ADNPC) in the absence of symptoms. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms.

The work group organized Alzheimer’s disease biomarkers into three broad categories: (1) core biomarkers of ADNPC, (2) nonspecific biomarkers that are important in Alzheimer’s disease but are also involved in other brain diseases, and (3) biomarkers of diseases or conditions that commonly coexist with Alzheimer’s disease.

Core Alzheimer’s biomarkers are subdivided into Core 1 and Core 2. 

Core 1 biomarkers become abnormal early in the disease course and directly measure either amyloid plaques or phosphorylated tau (p-tau). They include amyloid PET; cerebrospinal fluid (CSF) amyloid beta 42/40 ratio, CSF p-tau181/amyloid beta 42 ratio, and CSF total (t)-tau/amyloid beta 42 ratio; and “accurate” plasma biomarkers, such as p-tau217. 

“An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of Alzheimer’s disease and to inform clinical decision making [sic] throughout the disease continuum,” the work group wrote. 

Core 2 biomarkers become abnormal later in the disease process and are more closely linked with the onset of symptoms. Core 2 biomarkers include tau PET and certain soluble tau fragments associated with tau proteinopathy (eg, MTBR-tau243) but also pT205 and nonphosphorylated mid-region tau fragments. 

Core 2 biomarkers, when combined with Core 1, may be used to stage biologic disease severity; abnormal Core 2 biomarkers “increase confidence that Alzheimer’s disease is contributing to symptoms,” the work group noted. 

The revised criteria give clinicians “the flexibility to use plasma or PET scans or CSF,” Dr. Carrillo said. “They will have several tools that they can choose from and offer this variety of tools to their patients. We need different tools for different individuals. There will be differences in coverage and access to these diagnostics.” 

The revised criteria also include an integrated biologic and clinical staging scheme that acknowledges the fact that common co-pathologies, cognitive reserve, and resistance may modify relationships between clinical and biologic Alzheimer’s disease stages. 
 

 

 

Formal Guidelines to Come 

The work group noted that currently, the clinical use of Alzheimer’s disease biomarkers is intended for the evaluation of symptomatic patients, not cognitively unimpaired individuals.

Disease-targeted therapies have not yet been approved for cognitively unimpaired individuals. For this reason, the work group currently recommends against diagnostic testing in cognitively unimpaired individuals outside the context of observational or therapeutic research studies. 

This recommendation would change in the future if disease-targeted therapies that are currently being evaluated in trials demonstrate a benefit in preventing cognitive decline and are approved for use in preclinical Alzheimer’s disease, they wrote. 

They emphasize that the revised criteria are not intended to provide step-by-step clinical practice guidelines for clinicians. Rather, they provide general principles to inform diagnosis and staging of Alzheimer’s disease that reflect current science.

“This is just the beginning,” said Dr. Carrillo. “This is a gathering of the evidence to date and putting it in one place so we can have a consensus and actually a way to test it and make it better as we add new science.”

This also serves as a “springboard” for the Alzheimer’s Association to create formal clinical guidelines. “That will come, hopefully, over the next 12 months. We’ll be working on it, and we hope to have that in 2025,” Dr. Carrillo said. 

The revised criteria also emphasize the role of the clinician. 

“The biologically based diagnosis of Alzheimer’s disease is meant to assist, rather than supplant, the clinical evaluation of individuals with cognitive impairment,” the work group wrote in a related commentary published online in Nature Medicine

Recent diagnostics and therapeutic developments “herald a virtuous cycle in which improvements in diagnostic methods enable more sophisticated treatment approaches, which in turn steer advances in diagnostic methods,” they continued. “An unchanging principle, however, is that effective treatment will always rely on the ability to diagnose and stage the biology driving the disease process.”

Funding for this research was provided by the National Institutes of Health, Alexander family professorship, GHR Foundation, Alzheimer’s Association, Veterans Administration, Life Molecular Imaging, Michael J. Fox Foundation for Parkinson’s Research, Avid Radiopharmaceuticals, Eli Lilly, Gates Foundation, Biogen, C2N Diagnostics, Eisai, Fujirebio, GE Healthcare, Roche, National Institute on Aging, Roche/Genentech, BrightFocus Foundation, Hoffmann-La Roche, Novo Nordisk, Toyama, National MS Society, Alzheimer Drug Discovery Foundation, and others. A complete list of donors and disclosures is included in the original article.

 A version of this article appeared on Medscape.com.

A work group convened by the Alzheimer’s Association has released revised biology-based criteria for the diagnosis and staging of Alzheimer’s disease, including a new biomarker classification system that incorporates fluid and imaging biomarkers as well as an updated disease staging system. 

“Plasma markers are here now, and it’s very important to incorporate them into the criteria for diagnosis,” said senior author Maria C. Carrillo, PhD, Alzheimer’s Association chief science officer and medical affairs lead. 

The revised criteria are the first updates since 2018.

“Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine — including cancer, heart disease, and diabetes — and is becoming a unifying concept common to all neurodegenerative diseases,” lead author Clifford Jack Jr, MD, with Mayo Clinic, Rochester, Minnesota, said in a news release from the Alzheimer’s Association. 

“These updates to the diagnostic criteria are needed now because we know more about the underlying biology of Alzheimer’s and we are able to measure those changes,” Dr. Jack added. 

The 2024 revised criteria for diagnosis and staging of Alzheimer’s disease were published online in Alzheimer’s & Dementia
 

Core Biomarkers Defined

The revised criteria define Alzheimer’s disease as a biologic process that begins with the appearance of Alzheimer’s disease neuropathologic change (ADNPC) in the absence of symptoms. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms.

The work group organized Alzheimer’s disease biomarkers into three broad categories: (1) core biomarkers of ADNPC, (2) nonspecific biomarkers that are important in Alzheimer’s disease but are also involved in other brain diseases, and (3) biomarkers of diseases or conditions that commonly coexist with Alzheimer’s disease.

Core Alzheimer’s biomarkers are subdivided into Core 1 and Core 2. 

Core 1 biomarkers become abnormal early in the disease course and directly measure either amyloid plaques or phosphorylated tau (p-tau). They include amyloid PET; cerebrospinal fluid (CSF) amyloid beta 42/40 ratio, CSF p-tau181/amyloid beta 42 ratio, and CSF total (t)-tau/amyloid beta 42 ratio; and “accurate” plasma biomarkers, such as p-tau217. 

“An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of Alzheimer’s disease and to inform clinical decision making [sic] throughout the disease continuum,” the work group wrote. 

Core 2 biomarkers become abnormal later in the disease process and are more closely linked with the onset of symptoms. Core 2 biomarkers include tau PET and certain soluble tau fragments associated with tau proteinopathy (eg, MTBR-tau243) but also pT205 and nonphosphorylated mid-region tau fragments. 

Core 2 biomarkers, when combined with Core 1, may be used to stage biologic disease severity; abnormal Core 2 biomarkers “increase confidence that Alzheimer’s disease is contributing to symptoms,” the work group noted. 

The revised criteria give clinicians “the flexibility to use plasma or PET scans or CSF,” Dr. Carrillo said. “They will have several tools that they can choose from and offer this variety of tools to their patients. We need different tools for different individuals. There will be differences in coverage and access to these diagnostics.” 

The revised criteria also include an integrated biologic and clinical staging scheme that acknowledges the fact that common co-pathologies, cognitive reserve, and resistance may modify relationships between clinical and biologic Alzheimer’s disease stages. 
 

 

 

Formal Guidelines to Come 

The work group noted that currently, the clinical use of Alzheimer’s disease biomarkers is intended for the evaluation of symptomatic patients, not cognitively unimpaired individuals.

Disease-targeted therapies have not yet been approved for cognitively unimpaired individuals. For this reason, the work group currently recommends against diagnostic testing in cognitively unimpaired individuals outside the context of observational or therapeutic research studies. 

This recommendation would change in the future if disease-targeted therapies that are currently being evaluated in trials demonstrate a benefit in preventing cognitive decline and are approved for use in preclinical Alzheimer’s disease, they wrote. 

They emphasize that the revised criteria are not intended to provide step-by-step clinical practice guidelines for clinicians. Rather, they provide general principles to inform diagnosis and staging of Alzheimer’s disease that reflect current science.

“This is just the beginning,” said Dr. Carrillo. “This is a gathering of the evidence to date and putting it in one place so we can have a consensus and actually a way to test it and make it better as we add new science.”

This also serves as a “springboard” for the Alzheimer’s Association to create formal clinical guidelines. “That will come, hopefully, over the next 12 months. We’ll be working on it, and we hope to have that in 2025,” Dr. Carrillo said. 

The revised criteria also emphasize the role of the clinician. 

“The biologically based diagnosis of Alzheimer’s disease is meant to assist, rather than supplant, the clinical evaluation of individuals with cognitive impairment,” the work group wrote in a related commentary published online in Nature Medicine

Recent diagnostics and therapeutic developments “herald a virtuous cycle in which improvements in diagnostic methods enable more sophisticated treatment approaches, which in turn steer advances in diagnostic methods,” they continued. “An unchanging principle, however, is that effective treatment will always rely on the ability to diagnose and stage the biology driving the disease process.”

Funding for this research was provided by the National Institutes of Health, Alexander family professorship, GHR Foundation, Alzheimer’s Association, Veterans Administration, Life Molecular Imaging, Michael J. Fox Foundation for Parkinson’s Research, Avid Radiopharmaceuticals, Eli Lilly, Gates Foundation, Biogen, C2N Diagnostics, Eisai, Fujirebio, GE Healthcare, Roche, National Institute on Aging, Roche/Genentech, BrightFocus Foundation, Hoffmann-La Roche, Novo Nordisk, Toyama, National MS Society, Alzheimer Drug Discovery Foundation, and others. A complete list of donors and disclosures is included in the original article.

 A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ALZHEIMER’S & DEMENTIA

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Common Cognitive Test Falls Short for Concussion Diagnosis

Article Type
Changed

 

A tool routinely used to evaluate concussion in college athletes fails to accurately diagnose the condition in many cases, a new study showed.

Investigators found that almost half of athletes diagnosed with a concussion tested normally on the Sports Concussion Assessment Tool 5 (SCAT5), the recommended tool for measuring cognitive skills in concussion evaluations. The most accurate measure of concussion was symptoms reported by the athletes.

“If you don’t do well on the cognitive exam, it suggests you have a concussion. But many people who are concussed do fine on the exam,” lead author Kimberly Harmon, MD, professor of family medicine and section head of sports medicine at the University of Washington School of Medicine, Seattle, said in a news release.

The study was published online in JAMA Network Open.

Introduced in 2004, the SCAT was created to standardize the collection of information clinicians use to diagnose concussion, including evaluation of symptoms, orientation, and balance. It also uses a 10-word list to assess immediate memory and delayed recall.

Dr. Harmon’s own experiences as a team physician led her to wonder about the accuracy of the cognitive screening portion of the SCAT. She saw that “some people were concussed, and they did well on the recall test. Some people weren’t concussed, and they didn’t do well. So I thought we should study it,” she said.

Investigators compared 92 National Collegiate Athletic Association (NCAA) Division 1 athletes who had sustained a concussion between 2020 and 2022 and had a concussion evaluation within 48 hours to 92 matched nonconcussed teammates (overall cohort, 52% men). Most concussions occurred in those who played football, followed by volleyball.

All athletes had previously completed NCAA-required baseline concussion screenings. Participants completed the SCAT5 screening test within 2 weeks of the incident concussion.

No significant differences were found between the baseline scores of athletes with and without concussion. Moreover, responses on the word recall section of the SCAT5 held little predictive value for concussion.

Nearly half (45%) of athletes with concussion performed at or even above their baseline cognitive report, which the authors said highlights the limitations of the cognitive components of SCAT5.

The most accurate predictor of concussion was participants’ responses to questions about their symptoms.

“If you get hit in the head and go to the sideline and say, ‘I have a headache, I’m dizzy, I don’t feel right,’ I can say with pretty good assurance that you have a concussion,” Dr. Harmon continued. “I don’t need to do any testing.”

Unfortunately, the problem is “that some athletes don’t want to come out. They don’t report their symptoms or may not recognize their symptoms. So then you need an objective, accurate test to tell you whether you can safely put the athlete back on the field. We don’t have that right now.”

The study did not control for concussion history, and the all–Division 1 cohort means the findings may not be generalizable to other athletes.

Nevertheless, investigators said the study “affirms that reported symptoms are the most sensitive indicator of concussion, and there are limitations to the objective cognitive testing included in the SCAT.” They concluded that concussion “remains a clinical diagnosis that should be based on a thorough review of signs, symptoms, and clinical findings.”

This study was funded in part by donations from University of Washington alumni Jack and Luellen Cherneski and the Chisholm Foundation. Dr. Harmon reported no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

A tool routinely used to evaluate concussion in college athletes fails to accurately diagnose the condition in many cases, a new study showed.

Investigators found that almost half of athletes diagnosed with a concussion tested normally on the Sports Concussion Assessment Tool 5 (SCAT5), the recommended tool for measuring cognitive skills in concussion evaluations. The most accurate measure of concussion was symptoms reported by the athletes.

“If you don’t do well on the cognitive exam, it suggests you have a concussion. But many people who are concussed do fine on the exam,” lead author Kimberly Harmon, MD, professor of family medicine and section head of sports medicine at the University of Washington School of Medicine, Seattle, said in a news release.

The study was published online in JAMA Network Open.

Introduced in 2004, the SCAT was created to standardize the collection of information clinicians use to diagnose concussion, including evaluation of symptoms, orientation, and balance. It also uses a 10-word list to assess immediate memory and delayed recall.

Dr. Harmon’s own experiences as a team physician led her to wonder about the accuracy of the cognitive screening portion of the SCAT. She saw that “some people were concussed, and they did well on the recall test. Some people weren’t concussed, and they didn’t do well. So I thought we should study it,” she said.

Investigators compared 92 National Collegiate Athletic Association (NCAA) Division 1 athletes who had sustained a concussion between 2020 and 2022 and had a concussion evaluation within 48 hours to 92 matched nonconcussed teammates (overall cohort, 52% men). Most concussions occurred in those who played football, followed by volleyball.

All athletes had previously completed NCAA-required baseline concussion screenings. Participants completed the SCAT5 screening test within 2 weeks of the incident concussion.

No significant differences were found between the baseline scores of athletes with and without concussion. Moreover, responses on the word recall section of the SCAT5 held little predictive value for concussion.

Nearly half (45%) of athletes with concussion performed at or even above their baseline cognitive report, which the authors said highlights the limitations of the cognitive components of SCAT5.

The most accurate predictor of concussion was participants’ responses to questions about their symptoms.

“If you get hit in the head and go to the sideline and say, ‘I have a headache, I’m dizzy, I don’t feel right,’ I can say with pretty good assurance that you have a concussion,” Dr. Harmon continued. “I don’t need to do any testing.”

Unfortunately, the problem is “that some athletes don’t want to come out. They don’t report their symptoms or may not recognize their symptoms. So then you need an objective, accurate test to tell you whether you can safely put the athlete back on the field. We don’t have that right now.”

The study did not control for concussion history, and the all–Division 1 cohort means the findings may not be generalizable to other athletes.

Nevertheless, investigators said the study “affirms that reported symptoms are the most sensitive indicator of concussion, and there are limitations to the objective cognitive testing included in the SCAT.” They concluded that concussion “remains a clinical diagnosis that should be based on a thorough review of signs, symptoms, and clinical findings.”

This study was funded in part by donations from University of Washington alumni Jack and Luellen Cherneski and the Chisholm Foundation. Dr. Harmon reported no relevant financial relationships.

A version of this article first appeared on Medscape.com.

 

A tool routinely used to evaluate concussion in college athletes fails to accurately diagnose the condition in many cases, a new study showed.

Investigators found that almost half of athletes diagnosed with a concussion tested normally on the Sports Concussion Assessment Tool 5 (SCAT5), the recommended tool for measuring cognitive skills in concussion evaluations. The most accurate measure of concussion was symptoms reported by the athletes.

“If you don’t do well on the cognitive exam, it suggests you have a concussion. But many people who are concussed do fine on the exam,” lead author Kimberly Harmon, MD, professor of family medicine and section head of sports medicine at the University of Washington School of Medicine, Seattle, said in a news release.

The study was published online in JAMA Network Open.

Introduced in 2004, the SCAT was created to standardize the collection of information clinicians use to diagnose concussion, including evaluation of symptoms, orientation, and balance. It also uses a 10-word list to assess immediate memory and delayed recall.

Dr. Harmon’s own experiences as a team physician led her to wonder about the accuracy of the cognitive screening portion of the SCAT. She saw that “some people were concussed, and they did well on the recall test. Some people weren’t concussed, and they didn’t do well. So I thought we should study it,” she said.

Investigators compared 92 National Collegiate Athletic Association (NCAA) Division 1 athletes who had sustained a concussion between 2020 and 2022 and had a concussion evaluation within 48 hours to 92 matched nonconcussed teammates (overall cohort, 52% men). Most concussions occurred in those who played football, followed by volleyball.

All athletes had previously completed NCAA-required baseline concussion screenings. Participants completed the SCAT5 screening test within 2 weeks of the incident concussion.

No significant differences were found between the baseline scores of athletes with and without concussion. Moreover, responses on the word recall section of the SCAT5 held little predictive value for concussion.

Nearly half (45%) of athletes with concussion performed at or even above their baseline cognitive report, which the authors said highlights the limitations of the cognitive components of SCAT5.

The most accurate predictor of concussion was participants’ responses to questions about their symptoms.

“If you get hit in the head and go to the sideline and say, ‘I have a headache, I’m dizzy, I don’t feel right,’ I can say with pretty good assurance that you have a concussion,” Dr. Harmon continued. “I don’t need to do any testing.”

Unfortunately, the problem is “that some athletes don’t want to come out. They don’t report their symptoms or may not recognize their symptoms. So then you need an objective, accurate test to tell you whether you can safely put the athlete back on the field. We don’t have that right now.”

The study did not control for concussion history, and the all–Division 1 cohort means the findings may not be generalizable to other athletes.

Nevertheless, investigators said the study “affirms that reported symptoms are the most sensitive indicator of concussion, and there are limitations to the objective cognitive testing included in the SCAT.” They concluded that concussion “remains a clinical diagnosis that should be based on a thorough review of signs, symptoms, and clinical findings.”

This study was funded in part by donations from University of Washington alumni Jack and Luellen Cherneski and the Chisholm Foundation. Dr. Harmon reported no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA NETWORK OPEN

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article